Vertex-face correspondence of Boltzmann weights related to $s /(m \mid n)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 372115
(http://iopscience.iop.org/0305-4470/37/6/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.65
The article was downloaded on 02/06/2010 at 19:51

Please note that terms and conditions apply.

Vertex-face correspondence of Boltzmann weights related to $\operatorname{sl}(m \mid n)$

Youichi Shibukawa
Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
E-mail: shibu@math.sci.hokudai.ac.jp

Received 20 October 2003, in final form 12 December 2003
Published 28 January 2004
Online at stacks.iop.org/JPhysA/37/2115 (DOI: 10.1088/0305-4470/37/6/011)

Abstract

In this work, we present a vertex-face correspondence between an elliptic R-operator and Boltzmann weights related to the Lie superalgebra $\operatorname{sl}(m \mid n)$.

PACS numbers: 02.20.Uw, 02.30.Ik, 05.50.+q
Mathematics Subject Classification: 82B23
Dedicated to Professor Tatsuo Suwa on the occasion of his sixtieth birthday.

1. Introduction

A key method in solving two-dimensional lattice models of the face type is Baxter's corner transfer matrix method [1], which requires that Boltzmann weights satisfy the star-triangle relation (STR) and the inversion relations. Much attention has thus been directed to finding Boltzmann weights with the properties. The vertex-face correspondence is a major tool in constructing such Boltzmann weights.

Andrews et al [2] constructed the Boltzmann weights associated with the R-matrix of the eight-vertex model through a vertex-face correspondence [3]. By extending the work above, Jimbo et al $[4-6]$ presented the Boltzmann weights related to the affine Lie algebra $A_{N-1}^{(1)}$ (see also [7]). In order to show the STR, they used a vertex-face correspondence whose vertex counterpart is Belavin's R-matrix [8]. An elliptic R-operator [9-12], a generalization [13] of Belavin's R-matrix, has a vertex-face correspondence [14] (cf [15]) which reproduces the vertex-face correspondence above. In 1991, Okado constructed the Boltzmann weights [16] related to the Lie superalgebra $s l(m \mid n)$, a generalization of the Boltzmann weights defined by Jimbo et al. They satisfy the STR and the inversion relations.

Until now, no work has focused on a vertex-face correspondence of the Boltzmann weights related to $s l(m \mid n)$.

In this paper, we investigate and present a vertex-face correspondence between the elliptic R-operator and the Boltzmann weights related to $s l(m \mid n)$, which is a generalization of the work [14].

Let us now explain how this paper is organized. In section 2, we survey the Boltzmann weights related to the Lie superalgebra $s l(m \mid n)$ and the elliptic R-operator. We note that the domain of the elliptic R-operator in this work is some simple algebraic extension field of \mathcal{M}_{2}, the field of functions meromorphic on \mathbb{C}^{2}. Section 3 describes the vertex-face correspondence between the elliptic R-operator and the Boltzmann weights related to $s l(m \mid n)$.

2. Elliptic R-operator and Boltzmann weights related to $s l(m \mid n)$

In this section we present a review of the elliptic R-operator and the Boltzmann weights related to the Lie superalgebra $s l(m \mid n)$.

Fix a complex number τ whose imaginary part is positive $(\operatorname{Im} \tau>0)$ and we choose a complex number η such that $\eta, 2 \eta \notin \mathbb{Z}+\mathbb{Z} \tau$. We denote by $\theta(x)$ the elliptic theta function

$$
\theta(x)=\sum_{k \in \mathbb{Z}} \exp \left[\pi \sqrt{-1}\left(k+\frac{1}{2}\right)^{2} \tau+2 \pi \sqrt{-1}\left(k+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\right] .
$$

Let m and n be nonnegative integers such that $m+n>0$ and let $\mathcal{A}=\left\{e_{\mu} \mid \mu=\right.$ $1,2, \ldots, m+n\}$ be a basis of the vector space \mathbb{C}^{m+n}. Define a \mathbb{C}-bilinear form $\langle\cdot, \cdot\rangle$ on $\mathbb{C}^{m+n} \times \mathbb{C}^{m+n}$ by $\left\langle e_{\mu}, e_{\nu}\right\rangle=s_{\mu} \delta_{\mu \nu}$, where $\delta_{\mu \nu}$ is the Kronecker delta symbol and

$$
s_{\mu}= \begin{cases}1 & \text { for } \quad \mu=1, \ldots, m \\ -1 & \text { for } \quad \mu=m+1, \ldots, m+n\end{cases}
$$

Let $I_{\mu}(\mu=1,2, \ldots, m+n)$ be a complex number. For $a, b, c, d \in \mathbb{C}^{m+n}$ and $u \in \mathbb{C}$, we indicate by $W\left(\left.\begin{array}{ccc}a & c \\ b & d\end{array} \right\rvert\, u\right)$ the Boltzmann weights related to the Lie superalgebra $s l(m \mid n)$ constructed by Okado [16]:
$W\left(\left.\begin{array}{ll}a & c \\ b & d\end{array} \right\rvert\, u\right)=0 \quad$ unless $\quad b-a, c-a, d-b, d-c \in \mathcal{A}$
$W\left(\left.\begin{array}{cc}a & a+e_{\mu} \\ a+e_{\mu} & a+2 e_{\mu}\end{array} \right\rvert\, u\right)=\frac{\theta\left(\eta+s_{\mu} u\right)}{\theta(\eta)}$
$W\left(\left.\begin{array}{cc}a & a+e_{\mu} \\ a+e_{\mu} & a+e_{\mu}+e_{\nu}\end{array} \right\rvert\, u\right)=\frac{\theta\left(\eta a_{\mu \nu}+I_{\mu \nu}-u\right)}{\theta\left(\eta a_{\mu \nu}+I_{\mu \nu}\right)} \quad(\mu \neq v)$
$W\left(\left.\begin{array}{cc}a & a+e_{\nu} \\ a+e_{\mu} & a+e_{\mu}+e_{\nu}\end{array} \right\rvert\, u\right)=\frac{\theta(u)}{\theta(\eta)}\left(\frac{\theta\left(\eta a_{\mu \nu}+I_{\mu \nu}+\eta\right) \theta\left(\eta a_{\mu \nu}+I_{\mu \nu}-\eta\right)}{\theta\left(\eta a_{\mu \nu}+I_{\mu \nu}\right)^{2}}\right)^{1 / 2}$
($\mu \neq v$).
Here $a_{\mu}=\left\langle a, e_{\mu}\right\rangle, a_{\mu \nu}=a_{\mu}-a_{\nu}$ and $I_{\mu \nu}=I_{\mu}-I_{\nu}$. They satisfy the STR:

$$
\begin{align*}
& \sum_{g \in \mathbb{C}^{m+n}} W\left(\left.\begin{array}{ll}
a & g \\
b & c
\end{array} \right\rvert\, u\right) W\left(\left.\begin{array}{ll}
g & e \\
c & d
\end{array} \right\rvert\, u+v\right) W\left(\left.\begin{array}{ll}
a & f \\
g & e
\end{array} \right\rvert\, v\right) \\
&=\sum_{g^{\prime} \in \mathbb{C}^{m+n}} W\left(\left.\begin{array}{ll}
b & g^{\prime} \\
c & d
\end{array} \right\rvert\, v\right) W\left(\left.\begin{array}{ll}
a & f \\
b & g^{\prime}
\end{array} \right\rvert\, u+v\right) W\left(\left.\begin{array}{cc}
f & e \\
g^{\prime} & d
\end{array} \right\rvert\, u\right) . \tag{1}
\end{align*}
$$

For a positive integer k, let \mathcal{M}_{k} be the field of functions meromorphic on \mathbb{C}^{k} and let $\overline{\mathcal{M}}_{k}$ be its algebraic closure. Denote by $h \in \overline{\mathcal{M}}_{2}$ a root of the following polynomial g in $\mathcal{M}_{2}[X]$:

$$
g(X)=X^{2}-\frac{\theta(x-y+\eta) \theta(x-y-\eta)}{\theta(x-y)^{2}} .
$$

Proposition 1. The minimal polynomial of h on the field \mathcal{M}_{2} is g.
Proof. For the proof, it is sufficient to show that $h \notin \mathcal{M}_{2}$. The proof is by contradiction. Assume the assertion was false. Then $h \in \mathcal{M}_{2}$, and the function $h(x, y) \theta(x-y)$ is holomorphic on \mathbb{C}^{2} because

$$
\begin{equation*}
(h(x, y) \theta(x-y))^{2}=\theta(x-y+\eta) \theta(x-y-\eta) . \tag{2}
\end{equation*}
$$

We indicate by $f(x, y)$ the holomorphic function $h(x, y) \theta(x-y)$ on \mathbb{C}^{2}. By equation (2),

$$
f(x, 0)^{2}=\theta(x+\eta) \theta(x-\eta)
$$

and the right-hand side of the above equation consequently has a zero of the second order at the point $x=\eta$. This implies $2 \eta \in \mathbb{Z}+\mathbb{Z} \tau$, which is a contradiction.

Let $\mathcal{M}_{2}(h)$ be the simple algebraic extension field of \mathcal{M}_{2} by h. Define an operator σ on \mathcal{M}_{2} by

$$
\sigma(f)(x, y)=f(y, x)
$$

for $f \in \mathcal{M}_{2}$. The isomorphism σ on \mathcal{M}_{2} is extended to an isomorphism on $\mathcal{M}_{2}(h)$, which carries h into h because the polynomial $g^{\sigma}(X)=X^{2}-\sigma\left(\theta(x-y+\eta) \theta(x-y-\eta) / \theta(x-y)^{2}\right)$ $(=g(X))$ has a root h in $\mathcal{M}_{2}(h)$. Let us also denote by σ this isomorphism on $\mathcal{M}_{2}(h)$ since the other extension of σ on $\mathcal{M}_{2}(h)$ carries h into $-h$.

For $u \in \mathbb{C}$, define the elliptic R-operator $R(u)$ on $\mathcal{M}_{2}(h)$ [9-12] by

$$
R(u)(f)=(\theta(u) / \theta(\eta)) h f+B_{u} \sigma(f)
$$

for $f \in \mathcal{M}_{2}(h)$, where $B_{u}(x, y)=\theta(x-y-u) / \theta(x-y) \in \mathcal{M}_{2}$.
Remark. The elliptic R-operator $R(u)$ satisfies the Yang-Baxter equation (YBE).
We indicate by $h_{i j} \in \overline{\mathcal{M}}_{3}((i, j)=(1,2),(1,3),(2,3))$ roots of the following polynomials $g_{i j}$ in $\mathcal{M}_{3}[X]$ respectively:

$$
g_{i j}(X)=X^{2}-\frac{\theta\left(x_{i}-x_{j}+\eta\right) \theta\left(x_{i}-x_{j}-\eta\right)}{\theta\left(x_{i}-x_{j}\right)^{2}} .
$$

The elements $h_{i j}((i, j)=(1,2),(1,3),(2,3))$ satisfy the following lemma.

Lemma 2.

(1) $h_{i j} \notin \mathcal{M}_{3}$ for $(i, j)=(1,2),(1,3),(2,3)$.
(2) $h_{13}, h_{23} \notin \mathcal{M}_{3}\left(h_{12}\right)$ and $h_{23} \notin \mathcal{M}_{3}\left(h_{13}\right)$.
(3) $h_{23} \notin \mathcal{M}_{3}\left(h_{12}, h_{13}\right)$.

Here $\mathcal{M}_{3}\left(h_{12}, h_{13}\right)$ is the algebraic extension field of \mathcal{M}_{2} by h_{12} and h_{13}.
Let $\sigma_{i j}((i, j)=(1,2),(1,3),(2,3))$ be an operator on \mathcal{M}_{3} such that

$$
\sigma_{i j}(f)\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{\bar{\sigma}_{i j}(1)}, x_{\bar{\sigma}_{i j}(2)}, x_{\bar{\sigma}_{i j}(3)}\right),
$$

where

$$
\bar{\sigma}_{i j}(k)= \begin{cases}j & \text { for } \quad k=i \\ i & \text { for } \quad k=j \\ k & \text { for } \quad k \neq i, j\end{cases}
$$

The operator $\sigma_{i j}((i, j)=(1,2),(1,3),(2,3))$ is an isomorphism on \mathcal{M}_{3}.

Lemma 3. Let $\mathcal{M}_{3}\left(h_{12}, h_{13}, h_{23}\right)$ be the algebraic extension field of \mathcal{M}_{3} by h_{12}, h_{13} and h_{23}. For $(i, j)=(1,2),(1,3),(2,3)$, the operator $\sigma_{i j}$ is extended to an isomorphism on $\mathcal{M}_{3}\left(h_{12}, h_{13}, h_{23}\right)$ which carries $h_{k l}$ into $h_{\bar{\sigma}_{i j}(k) \bar{\sigma}_{i j}(l)}$. Here $h_{21}=h_{12}, h_{31}=h_{13}$ and $h_{32}=h_{23}$.

From now on, we denote by $\sigma_{i j}$ the extension of $\sigma_{i j}$ in lemma 3. Define operators $R_{i j}(u)(u \in \mathbb{C},(i, j)=(1,2),(1,3),(2,3))$ on $\mathcal{M}_{3}\left(h_{12}, h_{13}, h_{23}\right)$ by

$$
R_{i j}(u)(f)=(\theta(u) / \theta(\eta)) h_{i j} f+\left(B_{u}\right)_{i j} \sigma_{i j}(f)
$$

where $\left(B_{u}\right)_{i j}\left(x_{1}, x_{2}, x_{3}\right)=\theta\left(x_{i}-x_{j}-u\right) / \theta\left(x_{i}-x_{j}\right) \in \mathcal{M}_{3}$. These operators satisfy the YBE

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u) \quad(u, v \in \mathbb{C})
$$

because the functions $\left(B_{u}\right)_{i j}((i, j)=(1,2),(1,3),(2,3))$ satisfy the following functional equations:
$\theta(u+v)\left(B_{u}\right)_{12}\left(B_{v}\right)_{13}=\theta(v)\left(B_{u+v}\right)_{13}\left(B_{v}\right)_{32}+\theta(u)\left(B_{v}\right)_{23}\left(B_{u+v}\right)_{12}$
$\frac{\theta(u) \theta(v)}{\theta(\eta)^{2}}\left(B_{u+v}\right)_{13}\left(h_{12}^{2}-h_{23}^{2}\right)=\left(B_{v}\right)_{23}\left(B_{u+v}\right)_{12}\left(B_{u}\right)_{23}-\left(B_{v}\right)_{12}\left(B_{u+v}\right)_{23}\left(B_{u}\right)_{12}$
where $\left(B_{v}\right)_{32}\left(x_{1}, x_{2}, x_{3}\right)=\theta\left(x_{3}-x_{2}-v\right) / \theta\left(x_{3}-x_{2}\right)$.

3. Vertex-face correspondence

In this section we establish a vertex-face correspondence between the elliptic R-operator and the Boltzmann weights related to $\operatorname{sl}(m \mid n)$.

Let \mathcal{M}_{2}^{\prime} be a set of functions $f \in \mathcal{M}_{2}$ which satisfy that there exist two functions p_{f}, q_{f} holomorphic on $\mathbb{C}^{2}\left(q_{f} \not \equiv 0\right)$ such that $f=p_{f} / q_{f}, q_{f}^{(\mu, v)} \not \equiv 0, \sigma\left(q_{f}\right)^{(\mu, \nu)} \not \equiv 0$ for all $\mu, \nu=1,2, \ldots, m+n$. Here, for a function f holomorphic on \mathbb{C}^{2}, we define the function $f^{(\mu, \nu)}$ holomorphic on \mathbb{C}^{m+n} by

$$
f^{(\mu, \nu)}\left(x_{1}, x_{2}, \ldots, x_{m+n}\right)=f\left(\eta x_{\mu}+I_{\mu}, \eta x_{v}+I_{\nu}+\eta s_{\mu} \delta_{\mu \nu}\right) .
$$

Remark. Every element $f \in \mathcal{M}_{2}$ is a quotient $f=p_{f} / q_{f}$ of two functions p_{f}, q_{f} holomorphic on $\mathbb{C}^{2}\left(q_{f} \not \equiv 0\right)$ because of the Poincaré theorem [17].

Let \mathcal{L} be a set of functions $f \in \mathcal{M}_{2}(h)$ such that $f=f_{1}+f_{2} h$ for $f_{1}, f_{2} \in \mathcal{M}_{2}^{\prime}$. The proof of the following lemma is straightforward and we omit it.

Lemma 4.

(1) \mathcal{M}_{2}^{\prime} is a subring of \mathcal{M}_{2}.
(2) $h^{2} \in \mathcal{M}_{2}^{\prime}$.
(3) \mathcal{L} is a subring of $\mathcal{M}_{2}(h)$.
(4) $\sigma\left(\mathcal{M}_{2}^{\prime}\right) \subset \mathcal{M}_{2}^{\prime}$ and $\sigma(\mathcal{L}) \subset \mathcal{L}$.
(5) $R(u)(\mathcal{L}) \subset \mathcal{L}$ for all $u \in \mathbb{C}$.

Let $h_{(\mu, \nu)} \in \overline{\mathcal{M}}_{m+n}(1 \leqslant \mu<v \leqslant m+n)$ be a root of the following polynomial in $\mathcal{M}_{m+n}[X]$:

$$
X^{2}-\frac{\theta\left(\eta x_{\mu \nu}+I_{\mu \nu}+\eta\right) \theta\left(\eta x_{\mu \nu}+I_{\mu \nu}-\eta\right)}{\theta\left(\eta x_{\mu \nu}+I_{\mu \nu}\right)^{2}}
$$

Here $x_{\mu \nu}=x_{\mu}-x_{\nu}$. We indicate by $h_{(\mu, \nu)}(1 \leqslant \nu \leqslant \mu \leqslant m+n)$ the following element of $\overline{\mathcal{M}}_{m+n}$:

$$
\begin{array}{ll}
h_{(\mu, v)}=h_{(v, \mu)} & \text { for } \quad 1 \leqslant v<\mu \leqslant m+n \\
h_{(\mu, \mu)}=0 & \text { for } \quad 1 \leqslant \mu \leqslant m+n
\end{array}
$$

For $f \in \mathcal{M}_{2}^{\prime}$ and $\mu, v=1,2, \ldots, m+n$, define $f^{(\mu, \nu)} \in \mathcal{M}_{m+n}$ by

$$
f^{(\mu, \nu)}=p_{f}^{(\mu, \nu)} / q_{f}^{(\mu, \nu)}
$$

We note that $f^{(\mu, \nu)}$ above is well defined and that $\left(h^{2}\right)^{(\mu, \nu)}=\left(h_{(\mu, \nu)}\right)^{2}$.
Denote by $\phi^{(\mu, \nu)}(\mu, \nu=1,2, \ldots, m+n)$ an operator from \mathcal{L} to $\overline{\mathcal{M}}_{m+n}$ defined as follows:

$$
\phi^{(\mu, \nu)}(f)=f_{1}^{(\mu, \nu)}+f_{2}^{(\mu, \nu)} h_{(\mu, \nu)}
$$

for $f=f_{1}+f_{2} h \in \mathcal{L}\left(f_{1}, f_{2} \in \mathcal{M}_{2}^{\prime}\right)$.

Lemma 5.

(1) $\phi^{(\mu, v)}$ is a ring homomorphism.
(2) If $\mu \neq v$, then $\left.\phi^{(\nu, \mu)} \sigma\right|_{\mathcal{L}}=\phi^{(\mu, \nu)}$.

Proof. We only prove (2). If $\mu \neq v$, then we deduce the following, which immediately implies the desired result:

$$
\begin{aligned}
& \sigma(f)^{(\nu, \mu)}=f^{(\mu, v)} \quad \text { for } \quad f \in \mathcal{M}_{2}^{\prime} ; \\
& h_{(\nu, \mu)}=h_{(\mu, v)} .
\end{aligned}
$$

For $\mu, v, \kappa=1, \ldots, m+n$ and $u \in \mathbb{C}$, let $W(\mu, \nu, \kappa \mid u)$ be an element of $\overline{\mathcal{M}}_{m+n}$ defined as follows:

$$
\begin{array}{ll}
W(\mu, v, \kappa \mid u)=0 \quad \text { unless } \quad \kappa=\mu \text { or } v ; \\
W(\mu, v, \mu \mid u)=B_{u}^{(\mu, v)} ; & \\
W(\mu, v, v \mid u)=(\theta(u) / \theta(\eta)) h_{(\mu, v)} & \text { for } \quad \mu \neq v .
\end{array}
$$

The form of $W(\mu, \nu, \kappa \mid u)$ is the same as the Boltzmann weight $W\left(\left.\begin{array}{c}a \\ a+e_{\mu} \\ a+e_{\mu}+e_{\nu}\end{array} \right\rvert\, u\right)$.
Theorem 6 (Vertex-face correspondence). For $\mu, v=1, \ldots, m+n$ and $u \in \mathbb{C}$,

$$
\left.\phi^{(\mu, \nu)} R(u)\right|_{\mathcal{L}}=\left.\sum_{\kappa=1}^{m+n} W(\mu, \nu, \kappa \mid u) \phi^{(\kappa, \mu+\nu-\kappa)} \sigma\right|_{\mathcal{L}}
$$

Proof. Let f be an element of \mathcal{L}. The straightforward computation shows

$$
\begin{equation*}
\phi^{(\mu, \nu)}(R(u)(f))=(\theta(u) / \theta(\eta)) h_{(\mu, \nu)} \phi^{(\mu, \nu)}(f)+B_{u} \phi^{(\mu, \nu)} \sigma(f) . \tag{5}
\end{equation*}
$$

Due to lemma 5, we can show that the right-hand side of equation (5) turns out to be $\sum_{\kappa=1}^{m+n} W(\mu, v, \kappa \mid u) \phi^{(\kappa, \mu+v-\kappa)} \sigma(f)$, thereby completing the proof of the theorem.

Remark. Equations (3) and (4) induce the STR (1) of the Boltzmann weights.

Acknowledgments

The author would like to express his gratitude to Professor Yuji Yamada for his useful suggestions. He would like to thank the referees for pointing out redundancies in the original manuscript. This research was partially supported by the Ministry of Education, Science, Sports and Culture, grant-in-aid for Young Scientists (B), 15740001, 2003.

References

[1] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[2] Andrews G E, Baxter R J and Forrester P J 1984 J. Stat. Phys. 35 193-266
[3] Baxter R J 1973 Ann. Phys., NY 76 1-24, 25-47, 48-71
[4] Jimbo M, Miwa T and Okado M 1987 Lett. Math. Phys. 14 123-31
[5] Jimbo M, Miwa T and Okado M 1988 Nucl. Phys. B 300 74-108
[6] Jimbo M, Miwa T and Okado M 1988 Commun. Math. Phys. 116 507-25
[7] Yamada Y 1999 Comment. Math. Univ. Sancti Pauli 48 49-76
[8] Belavin A A 1981 Nucl. Phys. B 180 189-200
[9] Shibukawa Y and Ueno K 1992 Lett. Math. Phys. 25 239-48
[10] Shibukawa Y and Ueno K 1993 Int. J. Mod. Phys. A (Proc. Suppl.) 3A 309-12
[11] Shibukawa Y and Ueno K 1993 Quantum Groups, Integrable Statistical Models and Knot Theory (Singapore: World Scientific) pp 302-18
[12] Shibukawa Y 2001 J. Math. Phys. 42 2725-45
[13] Felder G and Pasquier V 1994 Lett. Math. Phys. 32 167-71
[14] Shibukawa Y 1995 Commun. Math. Phys. 172 661-77
[15] Hikami K and Komori Y 1998 J. Phys. Soc. Japan. 67 78-82
[16] Okado M 1991 Lett. Math. Phys. 22 39-43
[17] Grauert H and Remmert R 1979 Theory of Stein Spaces (New York: Springer) p 140

